Line 0
Link Here
|
|
|
1 |
/* |
2 |
* A framebuffer driver for VBE 2.0+ compliant video cards |
3 |
* |
4 |
* (c) 2007 Michal Januszewski <spock@gentoo.org> |
5 |
* Loosely based upon the vesafb driver. |
6 |
* |
7 |
*/ |
8 |
#include <linux/init.h> |
9 |
#include <linux/module.h> |
10 |
#include <linux/moduleparam.h> |
11 |
#include <linux/skbuff.h> |
12 |
#include <linux/timer.h> |
13 |
#include <linux/completion.h> |
14 |
#include <linux/connector.h> |
15 |
#include <linux/random.h> |
16 |
#include <linux/platform_device.h> |
17 |
#include <linux/limits.h> |
18 |
#include <linux/fb.h> |
19 |
#include <linux/io.h> |
20 |
#include <linux/mutex.h> |
21 |
#include <video/edid.h> |
22 |
#include <video/vga.h> |
23 |
#include <video/uvesafb.h> |
24 |
#ifdef CONFIG_MTRR |
25 |
#include <asm/mtrr.h> |
26 |
#endif |
27 |
#include "edid.h" |
28 |
#include <linux/percpu.h> |
29 |
|
30 |
struct rnd_state {u32 s1, s2, s3;}; |
31 |
|
32 |
static DEFINE_PER_CPU(struct rnd_state, net_rand_state); |
33 |
|
34 |
#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b) |
35 |
|
36 |
static u32 random32(void) |
37 |
{ |
38 |
struct rnd_state *state = &get_cpu_var(net_rand_state); |
39 |
|
40 |
state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12); |
41 |
state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4); |
42 |
state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17); |
43 |
put_cpu_var(state); |
44 |
return (state->s1 ^ state->s2 ^ state->s3); |
45 |
} |
46 |
|
47 |
static struct cb_id uvesafb_cn_id = { |
48 |
.idx = CN_IDX_V86D, |
49 |
.val = CN_VAL_V86D_UVESAFB |
50 |
}; |
51 |
static char v86d_path[PATH_MAX] = "/sbin/v86d"; |
52 |
static char v86d_started; /* has v86d been started by uvesafb? */ |
53 |
|
54 |
static struct fb_fix_screeninfo uvesafb_fix __devinitdata = { |
55 |
.id = "VESA VGA", |
56 |
.type = FB_TYPE_PACKED_PIXELS, |
57 |
.accel = FB_ACCEL_NONE, |
58 |
.visual = FB_VISUAL_TRUECOLOR, |
59 |
}; |
60 |
|
61 |
static int mtrr __devinitdata = 3; /* enable mtrr by default */ |
62 |
static int blank __devinitdata = 1; /* enable blanking by default */ |
63 |
static int ypan __devinitdata = 1; /* 0: scroll, 1: ypan, 2: ywrap */ |
64 |
static int pmi_setpal __devinitdata = 1; /* use PMI for palette changes */ |
65 |
static int nocrtc __devinitdata; /* ignore CRTC settings */ |
66 |
static int noedid __devinitdata; /* don't try DDC transfers */ |
67 |
static int vram_remap __devinitdata; /* set amt. of memory to be used */ |
68 |
static int vram_total __devinitdata; /* set total amount of memory */ |
69 |
static u16 maxclk __devinitdata; /* maximum pixel clock */ |
70 |
static u16 maxvf __devinitdata; /* maximum vertical frequency */ |
71 |
static u16 maxhf __devinitdata; /* maximum horizontal frequency */ |
72 |
static u16 vbemode __devinitdata; /* force use of a specific VBE mode */ |
73 |
static char *mode_option __devinitdata; |
74 |
|
75 |
static struct uvesafb_ktask *uvfb_tasks[UVESAFB_TASKS_MAX]; |
76 |
static DEFINE_MUTEX(uvfb_lock); |
77 |
|
78 |
/* |
79 |
* A handler for replies from userspace. |
80 |
* |
81 |
* Make sure each message passes consistency checks and if it does, |
82 |
* find the kernel part of the task struct, copy the registers and |
83 |
* the buffer contents and then complete the task. |
84 |
*/ |
85 |
static void uvesafb_cn_callback(void *data) |
86 |
{ |
87 |
struct cn_msg *msg = data; |
88 |
struct uvesafb_task *utask; |
89 |
struct uvesafb_ktask *task; |
90 |
|
91 |
if (msg->seq >= UVESAFB_TASKS_MAX) |
92 |
return; |
93 |
|
94 |
mutex_lock(&uvfb_lock); |
95 |
task = uvfb_tasks[msg->seq]; |
96 |
|
97 |
if (!task || msg->ack != task->ack) { |
98 |
mutex_unlock(&uvfb_lock); |
99 |
return; |
100 |
} |
101 |
|
102 |
utask = (struct uvesafb_task *)msg->data; |
103 |
|
104 |
/* Sanity checks for the buffer length. */ |
105 |
if (task->t.buf_len < utask->buf_len || |
106 |
utask->buf_len > msg->len - sizeof(*utask)) { |
107 |
mutex_unlock(&uvfb_lock); |
108 |
return; |
109 |
} |
110 |
|
111 |
uvfb_tasks[msg->seq] = NULL; |
112 |
mutex_unlock(&uvfb_lock); |
113 |
|
114 |
memcpy(&task->t, utask, sizeof(*utask)); |
115 |
|
116 |
if (task->t.buf_len && task->buf) |
117 |
memcpy(task->buf, utask + 1, task->t.buf_len); |
118 |
|
119 |
complete(task->done); |
120 |
return; |
121 |
} |
122 |
|
123 |
static int uvesafb_helper_start(void) |
124 |
{ |
125 |
char *envp[] = { |
126 |
"HOME=/", |
127 |
"PATH=/sbin:/bin", |
128 |
NULL, |
129 |
}; |
130 |
|
131 |
char *argv[] = { |
132 |
v86d_path, |
133 |
NULL, |
134 |
}; |
135 |
|
136 |
return call_usermodehelper(v86d_path, argv, envp, 1); |
137 |
} |
138 |
|
139 |
/* |
140 |
* Execute a uvesafb task. |
141 |
* |
142 |
* Returns 0 if the task is executed successfully. |
143 |
* |
144 |
* A message sent to the userspace consists of the uvesafb_task |
145 |
* struct and (optionally) a buffer. The uvesafb_task struct is |
146 |
* a simplified version of uvesafb_ktask (its kernel counterpart) |
147 |
* containing only the register values, flags and the length of |
148 |
* the buffer. |
149 |
* |
150 |
* Each message is assigned a sequence number (increased linearly) |
151 |
* and a random ack number. The sequence number is used as a key |
152 |
* for the uvfb_tasks array which holds pointers to uvesafb_ktask |
153 |
* structs for all requests. |
154 |
*/ |
155 |
static int uvesafb_exec(struct uvesafb_ktask *task) |
156 |
{ |
157 |
static int seq; |
158 |
struct cn_msg *m; |
159 |
int err; |
160 |
int len = sizeof(task->t) + task->t.buf_len; |
161 |
|
162 |
/* |
163 |
* Check whether the message isn't longer than the maximum |
164 |
* allowed by connector. |
165 |
*/ |
166 |
if (sizeof(*m) + len > CONNECTOR_MAX_MSG_SIZE) { |
167 |
printk(KERN_WARNING "uvesafb: message too long (%d), " |
168 |
"can't execute task\n", (int)(sizeof(*m) + len)); |
169 |
return -E2BIG; |
170 |
} |
171 |
|
172 |
m = kzalloc(sizeof(*m) + len, GFP_KERNEL); |
173 |
if (!m) |
174 |
return -ENOMEM; |
175 |
|
176 |
init_completion(task->done); |
177 |
|
178 |
memcpy(&m->id, &uvesafb_cn_id, sizeof(m->id)); |
179 |
m->seq = seq; |
180 |
m->len = len; |
181 |
m->ack = random32(); |
182 |
|
183 |
/* uvesafb_task structure */ |
184 |
memcpy(m + 1, &task->t, sizeof(task->t)); |
185 |
|
186 |
/* Buffer */ |
187 |
memcpy((u8 *)(m + 1) + sizeof(task->t), task->buf, task->t.buf_len); |
188 |
|
189 |
/* |
190 |
* Save the message ack number so that we can find the kernel |
191 |
* part of this task when a reply is received from userspace. |
192 |
*/ |
193 |
task->ack = m->ack; |
194 |
|
195 |
mutex_lock(&uvfb_lock); |
196 |
|
197 |
/* If all slots are taken -- bail out. */ |
198 |
if (uvfb_tasks[seq]) { |
199 |
mutex_unlock(&uvfb_lock); |
200 |
return -EBUSY; |
201 |
} |
202 |
|
203 |
/* Save a pointer to the kernel part of the task struct. */ |
204 |
uvfb_tasks[seq] = task; |
205 |
mutex_unlock(&uvfb_lock); |
206 |
|
207 |
err = cn_netlink_send(m, 0, gfp_any()); |
208 |
if (err == -ESRCH) { |
209 |
/* |
210 |
* Try to start the userspace helper if sending |
211 |
* the request failed the first time. |
212 |
*/ |
213 |
err = uvesafb_helper_start(); |
214 |
if (err) { |
215 |
printk(KERN_ERR "uvesafb: failed to execute %s\n", |
216 |
v86d_path); |
217 |
printk(KERN_ERR "uvesafb: make sure that the v86d " |
218 |
"helper is installed and executable\n"); |
219 |
} else { |
220 |
v86d_started = 1; |
221 |
err = cn_netlink_send(m, 0, gfp_any()); |
222 |
} |
223 |
} |
224 |
kfree(m); |
225 |
|
226 |
if (!err && !(task->t.flags & TF_EXIT)) |
227 |
err = !wait_for_completion_timeout(task->done, |
228 |
msecs_to_jiffies(UVESAFB_TIMEOUT)); |
229 |
|
230 |
mutex_lock(&uvfb_lock); |
231 |
uvfb_tasks[seq] = NULL; |
232 |
mutex_unlock(&uvfb_lock); |
233 |
|
234 |
seq++; |
235 |
if (seq >= UVESAFB_TASKS_MAX) |
236 |
seq = 0; |
237 |
|
238 |
return err; |
239 |
} |
240 |
|
241 |
/* |
242 |
* Free a uvesafb_ktask struct. |
243 |
*/ |
244 |
static void uvesafb_free(struct uvesafb_ktask *task) |
245 |
{ |
246 |
if (task) { |
247 |
if (task->done) |
248 |
kfree(task->done); |
249 |
kfree(task); |
250 |
} |
251 |
} |
252 |
|
253 |
/* |
254 |
* Prepare a uvesafb_ktask struct to be used again. |
255 |
*/ |
256 |
static void uvesafb_reset(struct uvesafb_ktask *task) |
257 |
{ |
258 |
struct completion *cpl = task->done; |
259 |
|
260 |
memset(task, 0, sizeof(*task)); |
261 |
task->done = cpl; |
262 |
} |
263 |
|
264 |
/* |
265 |
* Allocate and prepare a uvesafb_ktask struct. |
266 |
*/ |
267 |
static struct uvesafb_ktask *uvesafb_prep(void) |
268 |
{ |
269 |
struct uvesafb_ktask *task; |
270 |
|
271 |
task = kzalloc(sizeof(*task), GFP_KERNEL); |
272 |
if (task) { |
273 |
task->done = kzalloc(sizeof(*task->done), GFP_KERNEL); |
274 |
if (!task->done) { |
275 |
kfree(task); |
276 |
task = NULL; |
277 |
} |
278 |
} |
279 |
return task; |
280 |
} |
281 |
|
282 |
static void uvesafb_setup_var(struct fb_var_screeninfo *var, |
283 |
struct fb_info *info, struct vbe_mode_ib *mode) |
284 |
{ |
285 |
struct uvesafb_par *par = info->par; |
286 |
|
287 |
var->vmode = FB_VMODE_NONINTERLACED; |
288 |
var->sync = FB_SYNC_VERT_HIGH_ACT; |
289 |
|
290 |
var->xres = mode->x_res; |
291 |
var->yres = mode->y_res; |
292 |
var->xres_virtual = mode->x_res; |
293 |
var->yres_virtual = (par->ypan) ? |
294 |
info->fix.smem_len / mode->bytes_per_scan_line : |
295 |
mode->y_res; |
296 |
var->xoffset = 0; |
297 |
var->yoffset = 0; |
298 |
var->bits_per_pixel = mode->bits_per_pixel; |
299 |
|
300 |
if (var->bits_per_pixel == 15) |
301 |
var->bits_per_pixel = 16; |
302 |
|
303 |
if (var->bits_per_pixel > 8) { |
304 |
var->red.offset = mode->red_off; |
305 |
var->red.length = mode->red_len; |
306 |
var->green.offset = mode->green_off; |
307 |
var->green.length = mode->green_len; |
308 |
var->blue.offset = mode->blue_off; |
309 |
var->blue.length = mode->blue_len; |
310 |
var->transp.offset = mode->rsvd_off; |
311 |
var->transp.length = mode->rsvd_len; |
312 |
} else { |
313 |
var->red.offset = 0; |
314 |
var->green.offset = 0; |
315 |
var->blue.offset = 0; |
316 |
var->transp.offset = 0; |
317 |
|
318 |
/* |
319 |
* We're assuming that we can switch the DAC to 8 bits. If |
320 |
* this proves to be incorrect, we'll update the fields |
321 |
* later in set_par(). |
322 |
*/ |
323 |
if (par->vbe_ib.capabilities & VBE_CAP_CAN_SWITCH_DAC) { |
324 |
var->red.length = 8; |
325 |
var->green.length = 8; |
326 |
var->blue.length = 8; |
327 |
var->transp.length = 0; |
328 |
} else { |
329 |
var->red.length = 6; |
330 |
var->green.length = 6; |
331 |
var->blue.length = 6; |
332 |
var->transp.length = 0; |
333 |
} |
334 |
} |
335 |
} |
336 |
|
337 |
static int uvesafb_vbe_find_mode(struct uvesafb_par *par, |
338 |
int xres, int yres, int depth, unsigned char flags) |
339 |
{ |
340 |
int i, match = -1, h = 0, d = 0x7fffffff; |
341 |
|
342 |
for (i = 0; i < par->vbe_modes_cnt; i++) { |
343 |
h = abs(par->vbe_modes[i].x_res - xres) + |
344 |
abs(par->vbe_modes[i].y_res - yres) + |
345 |
abs(depth - par->vbe_modes[i].depth); |
346 |
|
347 |
/* |
348 |
* We have an exact match in terms of resolution |
349 |
* and depth. |
350 |
*/ |
351 |
if (h == 0) |
352 |
return i; |
353 |
|
354 |
if (h < d || (h == d && par->vbe_modes[i].depth > depth)) { |
355 |
d = h; |
356 |
match = i; |
357 |
} |
358 |
} |
359 |
i = 1; |
360 |
|
361 |
if (flags & UVESAFB_EXACT_DEPTH && |
362 |
par->vbe_modes[match].depth != depth) |
363 |
i = 0; |
364 |
|
365 |
if (flags & UVESAFB_EXACT_RES && d > 24) |
366 |
i = 0; |
367 |
|
368 |
if (i != 0) |
369 |
return match; |
370 |
else |
371 |
return -1; |
372 |
} |
373 |
|
374 |
static u8 *uvesafb_vbe_state_save(struct uvesafb_par *par) |
375 |
{ |
376 |
struct uvesafb_ktask *task; |
377 |
u8 *state; |
378 |
int err; |
379 |
|
380 |
if (!par->vbe_state_size) |
381 |
return NULL; |
382 |
|
383 |
state = kmalloc(par->vbe_state_size, GFP_KERNEL); |
384 |
if (!state) |
385 |
return NULL; |
386 |
|
387 |
task = uvesafb_prep(); |
388 |
if (!task) { |
389 |
kfree(state); |
390 |
return NULL; |
391 |
} |
392 |
|
393 |
task->t.regs.eax = 0x4f04; |
394 |
task->t.regs.ecx = 0x000f; |
395 |
task->t.regs.edx = 0x0001; |
396 |
task->t.flags = TF_BUF_RET | TF_BUF_ESBX; |
397 |
task->t.buf_len = par->vbe_state_size; |
398 |
task->buf = state; |
399 |
err = uvesafb_exec(task); |
400 |
|
401 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) { |
402 |
printk(KERN_WARNING "uvesafb: VBE get state call " |
403 |
"failed (eax=0x%x, err=%d)\n", |
404 |
task->t.regs.eax, err); |
405 |
kfree(state); |
406 |
state = NULL; |
407 |
} |
408 |
|
409 |
uvesafb_free(task); |
410 |
return state; |
411 |
} |
412 |
|
413 |
static void uvesafb_vbe_state_restore(struct uvesafb_par *par, u8 *state_buf) |
414 |
{ |
415 |
struct uvesafb_ktask *task; |
416 |
int err; |
417 |
|
418 |
if (!state_buf) |
419 |
return; |
420 |
|
421 |
task = uvesafb_prep(); |
422 |
if (!task) |
423 |
return; |
424 |
|
425 |
task->t.regs.eax = 0x4f04; |
426 |
task->t.regs.ecx = 0x000f; |
427 |
task->t.regs.edx = 0x0002; |
428 |
task->t.buf_len = par->vbe_state_size; |
429 |
task->t.flags = TF_BUF_ESBX; |
430 |
task->buf = state_buf; |
431 |
|
432 |
err = uvesafb_exec(task); |
433 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) |
434 |
printk(KERN_WARNING "uvesafb: VBE state restore call " |
435 |
"failed (eax=0x%x, err=%d)\n", |
436 |
task->t.regs.eax, err); |
437 |
|
438 |
uvesafb_free(task); |
439 |
} |
440 |
|
441 |
static int __devinit uvesafb_vbe_getinfo(struct uvesafb_ktask *task, |
442 |
struct uvesafb_par *par) |
443 |
{ |
444 |
int err; |
445 |
|
446 |
task->t.regs.eax = 0x4f00; |
447 |
task->t.flags = TF_VBEIB; |
448 |
task->t.buf_len = sizeof(struct vbe_ib); |
449 |
task->buf = &par->vbe_ib; |
450 |
strncpy(par->vbe_ib.vbe_signature, "VBE2", 4); |
451 |
|
452 |
err = uvesafb_exec(task); |
453 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) { |
454 |
printk(KERN_ERR "uvesafb: Getting VBE info block failed " |
455 |
"(eax=0x%x, err=%d)\n", (u32)task->t.regs.eax, |
456 |
err); |
457 |
return -EINVAL; |
458 |
} |
459 |
|
460 |
if (par->vbe_ib.vbe_version < 0x0200) { |
461 |
printk(KERN_ERR "uvesafb: Sorry, pre-VBE 2.0 cards are " |
462 |
"not supported.\n"); |
463 |
return -EINVAL; |
464 |
} |
465 |
|
466 |
if (!par->vbe_ib.mode_list_ptr) { |
467 |
printk(KERN_ERR "uvesafb: Missing mode list!\n"); |
468 |
return -EINVAL; |
469 |
} |
470 |
|
471 |
printk(KERN_INFO "uvesafb: "); |
472 |
|
473 |
/* |
474 |
* Convert string pointers and the mode list pointer into |
475 |
* usable addresses. Print informational messages about the |
476 |
* video adapter and its vendor. |
477 |
*/ |
478 |
if (par->vbe_ib.oem_vendor_name_ptr) |
479 |
printk("%s, ", |
480 |
((char *)task->buf) + par->vbe_ib.oem_vendor_name_ptr); |
481 |
|
482 |
if (par->vbe_ib.oem_product_name_ptr) |
483 |
printk("%s, ", |
484 |
((char *)task->buf) + par->vbe_ib.oem_product_name_ptr); |
485 |
|
486 |
if (par->vbe_ib.oem_product_rev_ptr) |
487 |
printk("%s, ", |
488 |
((char *)task->buf) + par->vbe_ib.oem_product_rev_ptr); |
489 |
|
490 |
if (par->vbe_ib.oem_string_ptr) |
491 |
printk("OEM: %s, ", |
492 |
((char *)task->buf) + par->vbe_ib.oem_string_ptr); |
493 |
|
494 |
printk("VBE v%d.%d\n", ((par->vbe_ib.vbe_version & 0xff00) >> 8), |
495 |
par->vbe_ib.vbe_version & 0xff); |
496 |
|
497 |
return 0; |
498 |
} |
499 |
|
500 |
static int __devinit uvesafb_vbe_getmodes(struct uvesafb_ktask *task, |
501 |
struct uvesafb_par *par) |
502 |
{ |
503 |
int off = 0, err; |
504 |
u16 *mode; |
505 |
|
506 |
par->vbe_modes_cnt = 0; |
507 |
|
508 |
/* Count available modes. */ |
509 |
mode = (u16 *) (((u8 *)&par->vbe_ib) + par->vbe_ib.mode_list_ptr); |
510 |
while (*mode != 0xffff) { |
511 |
par->vbe_modes_cnt++; |
512 |
mode++; |
513 |
} |
514 |
|
515 |
par->vbe_modes = kzalloc(sizeof(struct vbe_mode_ib) * |
516 |
par->vbe_modes_cnt, GFP_KERNEL); |
517 |
if (!par->vbe_modes) |
518 |
return -ENOMEM; |
519 |
|
520 |
/* Get info about all available modes. */ |
521 |
mode = (u16 *) (((u8 *)&par->vbe_ib) + par->vbe_ib.mode_list_ptr); |
522 |
while (*mode != 0xffff) { |
523 |
struct vbe_mode_ib *mib; |
524 |
|
525 |
uvesafb_reset(task); |
526 |
task->t.regs.eax = 0x4f01; |
527 |
task->t.regs.ecx = (u32) *mode; |
528 |
task->t.flags = TF_BUF_RET | TF_BUF_ESDI; |
529 |
task->t.buf_len = sizeof(struct vbe_mode_ib); |
530 |
task->buf = par->vbe_modes + off; |
531 |
|
532 |
err = uvesafb_exec(task); |
533 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) { |
534 |
printk(KERN_ERR "uvesafb: Getting mode info block " |
535 |
"for mode 0x%x failed (eax=0x%x, err=%d)\n", |
536 |
*mode, (u32)task->t.regs.eax, err); |
537 |
return -EINVAL; |
538 |
} |
539 |
|
540 |
mib = task->buf; |
541 |
mib->mode_id = *mode; |
542 |
|
543 |
/* |
544 |
* We only want modes that are supported with the current |
545 |
* hardware configuration, color, graphics and that have |
546 |
* support for the LFB. |
547 |
*/ |
548 |
if ((mib->mode_attr & VBE_MODE_MASK) == VBE_MODE_MASK && |
549 |
mib->bits_per_pixel >= 8) |
550 |
off++; |
551 |
else |
552 |
par->vbe_modes_cnt--; |
553 |
|
554 |
mode++; |
555 |
mib->depth = mib->red_len + mib->green_len + mib->blue_len; |
556 |
|
557 |
/* |
558 |
* Handle 8bpp modes and modes with broken color component |
559 |
* lengths. |
560 |
*/ |
561 |
if (mib->depth == 0 || (mib->depth == 24 && |
562 |
mib->bits_per_pixel == 32)) |
563 |
mib->depth = mib->bits_per_pixel; |
564 |
} |
565 |
|
566 |
return 0; |
567 |
} |
568 |
|
569 |
/* |
570 |
* The Protected Mode Interface is 32-bit x86 code, so we only run it on |
571 |
* x86 and not x86_64. |
572 |
*/ |
573 |
#ifdef CONFIG_X86_32 |
574 |
static int __devinit uvesafb_vbe_getpmi(struct uvesafb_ktask *task, |
575 |
struct uvesafb_par *par) |
576 |
{ |
577 |
int i, err; |
578 |
|
579 |
uvesafb_reset(task); |
580 |
task->t.regs.eax = 0x4f0a; |
581 |
task->t.regs.ebx = 0x0; |
582 |
err = uvesafb_exec(task); |
583 |
|
584 |
if ((task->t.regs.eax & 0xffff) != 0x4f || task->t.regs.es < 0xc000) { |
585 |
par->pmi_setpal = par->ypan = 0; |
586 |
} else { |
587 |
par->pmi_base = (u16 *)phys_to_virt(((u32)task->t.regs.es << 4) |
588 |
+ task->t.regs.edi); |
589 |
par->pmi_start = (u8 *)par->pmi_base + par->pmi_base[1]; |
590 |
par->pmi_pal = (u8 *)par->pmi_base + par->pmi_base[2]; |
591 |
printk(KERN_INFO "uvesafb: protected mode interface info at " |
592 |
"%04x:%04x\n", |
593 |
(u16)task->t.regs.es, (u16)task->t.regs.edi); |
594 |
printk(KERN_INFO "uvesafb: pmi: set display start = %p, " |
595 |
"set palette = %p\n", par->pmi_start, |
596 |
par->pmi_pal); |
597 |
|
598 |
if (par->pmi_base[3]) { |
599 |
printk(KERN_INFO "uvesafb: pmi: ports = "); |
600 |
for (i = par->pmi_base[3]/2; |
601 |
par->pmi_base[i] != 0xffff; i++) |
602 |
printk("%x ", par->pmi_base[i]); |
603 |
printk("\n"); |
604 |
|
605 |
if (par->pmi_base[i] != 0xffff) { |
606 |
printk(KERN_INFO "uvesafb: can't handle memory" |
607 |
" requests, pmi disabled\n"); |
608 |
par->ypan = par->pmi_setpal = 0; |
609 |
} |
610 |
} |
611 |
} |
612 |
return 0; |
613 |
} |
614 |
#endif /* CONFIG_X86_32 */ |
615 |
|
616 |
/* |
617 |
* Check whether a video mode is supported by the Video BIOS and is |
618 |
* compatible with the monitor limits. |
619 |
*/ |
620 |
static int __devinit uvesafb_is_valid_mode(struct fb_videomode *mode, |
621 |
struct fb_info *info) |
622 |
{ |
623 |
if (info->monspecs.gtf) { |
624 |
fb_videomode_to_var(&info->var, mode); |
625 |
if (fb_validate_mode(&info->var, info)) |
626 |
return 0; |
627 |
} |
628 |
|
629 |
if (uvesafb_vbe_find_mode(info->par, mode->xres, mode->yres, 8, |
630 |
UVESAFB_EXACT_RES) == -1) |
631 |
return 0; |
632 |
|
633 |
return 1; |
634 |
} |
635 |
|
636 |
static int __devinit uvesafb_vbe_getedid(struct uvesafb_ktask *task, |
637 |
struct fb_info *info) |
638 |
{ |
639 |
struct uvesafb_par *par = info->par; |
640 |
int err = 0; |
641 |
|
642 |
if (noedid || par->vbe_ib.vbe_version < 0x0300) |
643 |
return -EINVAL; |
644 |
|
645 |
task->t.regs.eax = 0x4f15; |
646 |
task->t.regs.ebx = 0; |
647 |
task->t.regs.ecx = 0; |
648 |
task->t.buf_len = 0; |
649 |
task->t.flags = 0; |
650 |
|
651 |
err = uvesafb_exec(task); |
652 |
|
653 |
if ((task->t.regs.eax & 0xffff) != 0x004f || err) |
654 |
return -EINVAL; |
655 |
|
656 |
if ((task->t.regs.ebx & 0x3) == 3) { |
657 |
printk(KERN_INFO "uvesafb: VBIOS/hardware supports both " |
658 |
"DDC1 and DDC2 transfers\n"); |
659 |
} else if ((task->t.regs.ebx & 0x3) == 2) { |
660 |
printk(KERN_INFO "uvesafb: VBIOS/hardware supports DDC2 " |
661 |
"transfers\n"); |
662 |
} else if ((task->t.regs.ebx & 0x3) == 1) { |
663 |
printk(KERN_INFO "uvesafb: VBIOS/hardware supports DDC1 " |
664 |
"transfers\n"); |
665 |
} else { |
666 |
printk(KERN_INFO "uvesafb: VBIOS/hardware doesn't support " |
667 |
"DDC transfers\n"); |
668 |
return -EINVAL; |
669 |
} |
670 |
|
671 |
task->t.regs.eax = 0x4f15; |
672 |
task->t.regs.ebx = 1; |
673 |
task->t.regs.ecx = task->t.regs.edx = 0; |
674 |
task->t.flags = TF_BUF_RET | TF_BUF_ESDI; |
675 |
task->t.buf_len = EDID_LENGTH; |
676 |
task->buf = kzalloc(EDID_LENGTH, GFP_KERNEL); |
677 |
|
678 |
err = uvesafb_exec(task); |
679 |
|
680 |
if ((task->t.regs.eax & 0xffff) == 0x004f && !err) { |
681 |
fb_edid_to_monspecs(task->buf, &info->monspecs); |
682 |
|
683 |
if (info->monspecs.vfmax && info->monspecs.hfmax) { |
684 |
/* |
685 |
* If the maximum pixel clock wasn't specified in |
686 |
* the EDID block, set it to 300 MHz. |
687 |
*/ |
688 |
if (info->monspecs.dclkmax == 0) |
689 |
info->monspecs.dclkmax = 300 * 1000000; |
690 |
info->monspecs.gtf = 1; |
691 |
} |
692 |
} else { |
693 |
err = -EINVAL; |
694 |
} |
695 |
|
696 |
kfree(task->buf); |
697 |
return err; |
698 |
} |
699 |
|
700 |
static void __devinit uvesafb_vbe_getmonspecs(struct uvesafb_ktask *task, |
701 |
struct fb_info *info) |
702 |
{ |
703 |
struct uvesafb_par *par = info->par; |
704 |
int i; |
705 |
|
706 |
memset(&info->monspecs, 0, sizeof(info->monspecs)); |
707 |
|
708 |
/* |
709 |
* If we don't get all necessary data from the EDID block, |
710 |
* mark it as incompatible with the GTF and set nocrtc so |
711 |
* that we always use the default BIOS refresh rate. |
712 |
*/ |
713 |
if (uvesafb_vbe_getedid(task, info)) { |
714 |
info->monspecs.gtf = 0; |
715 |
par->nocrtc = 1; |
716 |
} |
717 |
|
718 |
/* Kernel command line overrides. */ |
719 |
if (maxclk) |
720 |
info->monspecs.dclkmax = maxclk * 1000000; |
721 |
if (maxvf) |
722 |
info->monspecs.vfmax = maxvf; |
723 |
if (maxhf) |
724 |
info->monspecs.hfmax = maxhf * 1000; |
725 |
|
726 |
/* |
727 |
* In case DDC transfers are not supported, the user can provide |
728 |
* monitor limits manually. Lower limits are set to "safe" values. |
729 |
*/ |
730 |
if (info->monspecs.gtf == 0 && maxclk && maxvf && maxhf) { |
731 |
info->monspecs.dclkmin = 0; |
732 |
info->monspecs.vfmin = 60; |
733 |
info->monspecs.hfmin = 29000; |
734 |
info->monspecs.gtf = 1; |
735 |
par->nocrtc = 0; |
736 |
} |
737 |
|
738 |
if (info->monspecs.gtf) |
739 |
printk(KERN_INFO |
740 |
"uvesafb: monitor limits: vf = %d Hz, hf = %d kHz, " |
741 |
"clk = %d MHz\n", info->monspecs.vfmax, |
742 |
(int)(info->monspecs.hfmax / 1000), |
743 |
(int)(info->monspecs.dclkmax / 1000000)); |
744 |
else |
745 |
printk(KERN_INFO "uvesafb: no monitor limits have been set, " |
746 |
"default refresh rate will be used\n"); |
747 |
|
748 |
/* Add VBE modes to the modelist. */ |
749 |
for (i = 0; i < par->vbe_modes_cnt; i++) { |
750 |
struct fb_var_screeninfo var; |
751 |
struct vbe_mode_ib *mode; |
752 |
struct fb_videomode vmode; |
753 |
|
754 |
mode = &par->vbe_modes[i]; |
755 |
memset(&var, 0, sizeof(var)); |
756 |
|
757 |
var.xres = mode->x_res; |
758 |
var.yres = mode->y_res; |
759 |
|
760 |
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, &var, info); |
761 |
fb_var_to_videomode(&vmode, &var); |
762 |
fb_add_videomode(&vmode, &info->modelist); |
763 |
} |
764 |
|
765 |
/* Add valid VESA modes to our modelist. */ |
766 |
for (i = 0; i < VESA_MODEDB_SIZE; i++) { |
767 |
if (uvesafb_is_valid_mode((struct fb_videomode *) |
768 |
&vesa_modes[i], info)) |
769 |
fb_add_videomode(&vesa_modes[i], &info->modelist); |
770 |
} |
771 |
|
772 |
for (i = 0; i < info->monspecs.modedb_len; i++) { |
773 |
if (uvesafb_is_valid_mode(&info->monspecs.modedb[i], info)) |
774 |
fb_add_videomode(&info->monspecs.modedb[i], |
775 |
&info->modelist); |
776 |
} |
777 |
|
778 |
return; |
779 |
} |
780 |
|
781 |
static void __devinit uvesafb_vbe_getstatesize(struct uvesafb_ktask *task, |
782 |
struct uvesafb_par *par) |
783 |
{ |
784 |
int err; |
785 |
|
786 |
uvesafb_reset(task); |
787 |
|
788 |
/* |
789 |
* Get the VBE state buffer size. We want all available |
790 |
* hardware state data (CL = 0x0f). |
791 |
*/ |
792 |
task->t.regs.eax = 0x4f04; |
793 |
task->t.regs.ecx = 0x000f; |
794 |
task->t.regs.edx = 0x0000; |
795 |
task->t.flags = 0; |
796 |
|
797 |
err = uvesafb_exec(task); |
798 |
|
799 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) { |
800 |
printk(KERN_WARNING "uvesafb: VBE state buffer size " |
801 |
"cannot be determined (eax=0x%x, err=%d)\n", |
802 |
task->t.regs.eax, err); |
803 |
par->vbe_state_size = 0; |
804 |
return; |
805 |
} |
806 |
|
807 |
par->vbe_state_size = 64 * (task->t.regs.ebx & 0xffff); |
808 |
} |
809 |
|
810 |
static int __devinit uvesafb_vbe_init(struct fb_info *info) |
811 |
{ |
812 |
struct uvesafb_ktask *task = NULL; |
813 |
struct uvesafb_par *par = info->par; |
814 |
int err; |
815 |
|
816 |
task = uvesafb_prep(); |
817 |
if (!task) |
818 |
return -ENOMEM; |
819 |
|
820 |
err = uvesafb_vbe_getinfo(task, par); |
821 |
if (err) |
822 |
goto out; |
823 |
|
824 |
err = uvesafb_vbe_getmodes(task, par); |
825 |
if (err) |
826 |
goto out; |
827 |
|
828 |
par->nocrtc = nocrtc; |
829 |
#ifdef CONFIG_X86_32 |
830 |
par->pmi_setpal = pmi_setpal; |
831 |
par->ypan = ypan; |
832 |
|
833 |
if (par->pmi_setpal || par->ypan) |
834 |
uvesafb_vbe_getpmi(task, par); |
835 |
#else |
836 |
/* The protected mode interface is not available on non-x86. */ |
837 |
par->pmi_setpal = par->ypan = 0; |
838 |
#endif |
839 |
|
840 |
INIT_LIST_HEAD(&info->modelist); |
841 |
uvesafb_vbe_getmonspecs(task, info); |
842 |
uvesafb_vbe_getstatesize(task, par); |
843 |
|
844 |
out: uvesafb_free(task); |
845 |
return err; |
846 |
} |
847 |
|
848 |
static int __devinit uvesafb_vbe_init_mode(struct fb_info *info) |
849 |
{ |
850 |
struct list_head *pos; |
851 |
struct fb_modelist *modelist; |
852 |
struct fb_videomode *mode; |
853 |
struct uvesafb_par *par = info->par; |
854 |
int i, modeid; |
855 |
|
856 |
/* Has the user requested a specific VESA mode? */ |
857 |
if (vbemode) { |
858 |
for (i = 0; i < par->vbe_modes_cnt; i++) { |
859 |
if (par->vbe_modes[i].mode_id == vbemode) { |
860 |
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, |
861 |
&info->var, info); |
862 |
/* |
863 |
* With pixclock set to 0, the default BIOS |
864 |
* timings will be used in set_par(). |
865 |
*/ |
866 |
info->var.pixclock = 0; |
867 |
modeid = i; |
868 |
goto gotmode; |
869 |
} |
870 |
} |
871 |
printk(KERN_INFO "uvesafb: requested VBE mode 0x%x is " |
872 |
"unavailable\n", vbemode); |
873 |
vbemode = 0; |
874 |
} |
875 |
|
876 |
/* Count the modes in the modelist */ |
877 |
i = 0; |
878 |
list_for_each(pos, &info->modelist) |
879 |
i++; |
880 |
|
881 |
/* |
882 |
* Convert the modelist into a modedb so that we can use it with |
883 |
* fb_find_mode(). |
884 |
*/ |
885 |
mode = kzalloc(i * sizeof(*mode), GFP_KERNEL); |
886 |
if (mode) { |
887 |
i = 0; |
888 |
list_for_each(pos, &info->modelist) { |
889 |
modelist = list_entry(pos, struct fb_modelist, list); |
890 |
mode[i] = modelist->mode; |
891 |
i++; |
892 |
} |
893 |
|
894 |
if (!mode_option) |
895 |
mode_option = UVESAFB_DEFAULT_MODE; |
896 |
|
897 |
i = fb_find_mode(&info->var, info, mode_option, mode, i, |
898 |
NULL, 8); |
899 |
|
900 |
kfree(mode); |
901 |
} |
902 |
|
903 |
/* fb_find_mode() failed */ |
904 |
if (i == 0 || i >= 3) { |
905 |
info->var.xres = 640; |
906 |
info->var.yres = 480; |
907 |
mode = (struct fb_videomode *) |
908 |
fb_find_best_mode(&info->var, &info->modelist); |
909 |
|
910 |
if (mode) { |
911 |
fb_videomode_to_var(&info->var, mode); |
912 |
} else { |
913 |
modeid = par->vbe_modes[0].mode_id; |
914 |
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, |
915 |
&info->var, info); |
916 |
goto gotmode; |
917 |
} |
918 |
} |
919 |
|
920 |
/* Look for a matching VBE mode. */ |
921 |
modeid = uvesafb_vbe_find_mode(par, info->var.xres, info->var.yres, |
922 |
info->var.bits_per_pixel, UVESAFB_EXACT_RES); |
923 |
|
924 |
if (modeid == -1) |
925 |
return -EINVAL; |
926 |
|
927 |
gotmode: |
928 |
uvesafb_setup_var(&info->var, info, &par->vbe_modes[modeid]); |
929 |
|
930 |
/* |
931 |
* If we are not VBE3.0+ compliant, we're done -- the BIOS will |
932 |
* ignore our timings anyway. |
933 |
*/ |
934 |
if (par->vbe_ib.vbe_version < 0x0300 || par->nocrtc) |
935 |
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, |
936 |
&info->var, info); |
937 |
|
938 |
return modeid; |
939 |
} |
940 |
|
941 |
static int uvesafb_setpalette(struct uvesafb_pal_entry *entries, int count, |
942 |
int start, struct fb_info *info) |
943 |
{ |
944 |
struct uvesafb_ktask *task; |
945 |
struct uvesafb_par *par = info->par; |
946 |
int i = par->mode_idx; |
947 |
int err = 0; |
948 |
|
949 |
/* |
950 |
* We support palette modifications for 8 bpp modes only, so |
951 |
* there can never be more than 256 entries. |
952 |
*/ |
953 |
if (start + count > 256) |
954 |
return -EINVAL; |
955 |
|
956 |
/* Use VGA registers if mode is VGA-compatible. */ |
957 |
if (i >= 0 && i < par->vbe_modes_cnt && |
958 |
par->vbe_modes[i].mode_attr & VBE_MODE_VGACOMPAT) { |
959 |
for (i = 0; i < count; i++) { |
960 |
outb_p(start + i, dac_reg); |
961 |
outb_p(entries[i].red, dac_val); |
962 |
outb_p(entries[i].green, dac_val); |
963 |
outb_p(entries[i].blue, dac_val); |
964 |
} |
965 |
} |
966 |
#ifdef CONFIG_X86_32 |
967 |
else if (par->pmi_setpal) { |
968 |
__asm__ __volatile__( |
969 |
"call *(%%esi)" |
970 |
: /* no return value */ |
971 |
: "a" (0x4f09), /* EAX */ |
972 |
"b" (0), /* EBX */ |
973 |
"c" (count), /* ECX */ |
974 |
"d" (start), /* EDX */ |
975 |
"D" (entries), /* EDI */ |
976 |
"S" (&par->pmi_pal)); /* ESI */ |
977 |
} |
978 |
#endif |
979 |
else { |
980 |
task = uvesafb_prep(); |
981 |
if (!task) |
982 |
return -ENOMEM; |
983 |
|
984 |
task->t.regs.eax = 0x4f09; |
985 |
task->t.regs.ebx = 0x0; |
986 |
task->t.regs.ecx = count; |
987 |
task->t.regs.edx = start; |
988 |
task->t.flags = TF_BUF_ESDI; |
989 |
task->t.buf_len = sizeof(struct uvesafb_pal_entry) * count; |
990 |
task->buf = entries; |
991 |
|
992 |
err = uvesafb_exec(task); |
993 |
if ((task->t.regs.eax & 0xffff) != 0x004f) |
994 |
err = 1; |
995 |
|
996 |
uvesafb_free(task); |
997 |
} |
998 |
return err; |
999 |
} |
1000 |
|
1001 |
static int uvesafb_setcolreg(unsigned regno, unsigned red, unsigned green, |
1002 |
unsigned blue, unsigned transp, |
1003 |
struct fb_info *info) |
1004 |
{ |
1005 |
struct uvesafb_pal_entry entry; |
1006 |
int shift = 16 - info->var.green.length; |
1007 |
int err = 0; |
1008 |
|
1009 |
if (regno >= info->cmap.len) |
1010 |
return -EINVAL; |
1011 |
|
1012 |
if (info->var.bits_per_pixel == 8) { |
1013 |
entry.red = red >> shift; |
1014 |
entry.green = green >> shift; |
1015 |
entry.blue = blue >> shift; |
1016 |
entry.pad = 0; |
1017 |
|
1018 |
err = uvesafb_setpalette(&entry, 1, regno, info); |
1019 |
} else if (regno < 16) { |
1020 |
switch (info->var.bits_per_pixel) { |
1021 |
case 16: |
1022 |
if (info->var.red.offset == 10) { |
1023 |
/* 1:5:5:5 */ |
1024 |
((u32 *) (info->pseudo_palette))[regno] = |
1025 |
((red & 0xf800) >> 1) | |
1026 |
((green & 0xf800) >> 6) | |
1027 |
((blue & 0xf800) >> 11); |
1028 |
} else { |
1029 |
/* 0:5:6:5 */ |
1030 |
((u32 *) (info->pseudo_palette))[regno] = |
1031 |
((red & 0xf800) ) | |
1032 |
((green & 0xfc00) >> 5) | |
1033 |
((blue & 0xf800) >> 11); |
1034 |
} |
1035 |
break; |
1036 |
|
1037 |
case 24: |
1038 |
case 32: |
1039 |
red >>= 8; |
1040 |
green >>= 8; |
1041 |
blue >>= 8; |
1042 |
((u32 *)(info->pseudo_palette))[regno] = |
1043 |
(red << info->var.red.offset) | |
1044 |
(green << info->var.green.offset) | |
1045 |
(blue << info->var.blue.offset); |
1046 |
break; |
1047 |
} |
1048 |
} |
1049 |
return err; |
1050 |
} |
1051 |
|
1052 |
static int uvesafb_setcmap(struct fb_cmap *cmap, struct fb_info *info) |
1053 |
{ |
1054 |
struct uvesafb_pal_entry *entries; |
1055 |
int shift = 16 - info->var.green.length; |
1056 |
int i, err = 0; |
1057 |
|
1058 |
if (info->var.bits_per_pixel == 8) { |
1059 |
if (cmap->start + cmap->len > info->cmap.start + |
1060 |
info->cmap.len || cmap->start < info->cmap.start) |
1061 |
return -EINVAL; |
1062 |
|
1063 |
entries = kmalloc(sizeof(*entries) * cmap->len, GFP_KERNEL); |
1064 |
if (!entries) |
1065 |
return -ENOMEM; |
1066 |
|
1067 |
for (i = 0; i < cmap->len; i++) { |
1068 |
entries[i].red = cmap->red[i] >> shift; |
1069 |
entries[i].green = cmap->green[i] >> shift; |
1070 |
entries[i].blue = cmap->blue[i] >> shift; |
1071 |
entries[i].pad = 0; |
1072 |
} |
1073 |
err = uvesafb_setpalette(entries, cmap->len, cmap->start, info); |
1074 |
kfree(entries); |
1075 |
} else { |
1076 |
/* |
1077 |
* For modes with bpp > 8, we only set the pseudo palette in |
1078 |
* the fb_info struct. We rely on uvesafb_setcolreg to do all |
1079 |
* sanity checking. |
1080 |
*/ |
1081 |
for (i = 0; i < cmap->len; i++) { |
1082 |
err |= uvesafb_setcolreg(cmap->start + i, cmap->red[i], |
1083 |
cmap->green[i], cmap->blue[i], |
1084 |
0, info); |
1085 |
} |
1086 |
} |
1087 |
return err; |
1088 |
} |
1089 |
|
1090 |
static int uvesafb_pan_display(struct fb_var_screeninfo *var, |
1091 |
struct fb_info *info) |
1092 |
{ |
1093 |
#ifdef CONFIG_X86_32 |
1094 |
int offset; |
1095 |
struct uvesafb_par *par = info->par; |
1096 |
|
1097 |
offset = (var->yoffset * info->fix.line_length + var->xoffset) / 4; |
1098 |
|
1099 |
/* |
1100 |
* It turns out it's not the best idea to do panning via vm86, |
1101 |
* so we only allow it if we have a PMI. |
1102 |
*/ |
1103 |
if (par->pmi_start) { |
1104 |
__asm__ __volatile__( |
1105 |
"call *(%%edi)" |
1106 |
: /* no return value */ |
1107 |
: "a" (0x4f07), /* EAX */ |
1108 |
"b" (0), /* EBX */ |
1109 |
"c" (offset), /* ECX */ |
1110 |
"d" (offset >> 16), /* EDX */ |
1111 |
"D" (&par->pmi_start)); /* EDI */ |
1112 |
} |
1113 |
#endif |
1114 |
return 0; |
1115 |
} |
1116 |
|
1117 |
static int uvesafb_blank(int blank, struct fb_info *info) |
1118 |
{ |
1119 |
struct uvesafb_par *par = info->par; |
1120 |
struct uvesafb_ktask *task; |
1121 |
int err = 1; |
1122 |
|
1123 |
if (par->vbe_ib.capabilities & VBE_CAP_VGACOMPAT) { |
1124 |
int loop = 10000; |
1125 |
u8 seq = 0, crtc17 = 0; |
1126 |
|
1127 |
if (blank == FB_BLANK_POWERDOWN) { |
1128 |
seq = 0x20; |
1129 |
crtc17 = 0x00; |
1130 |
err = 0; |
1131 |
} else { |
1132 |
seq = 0x00; |
1133 |
crtc17 = 0x80; |
1134 |
err = (blank == FB_BLANK_UNBLANK) ? 0 : -EINVAL; |
1135 |
} |
1136 |
|
1137 |
vga_wseq(NULL, 0x00, 0x01); |
1138 |
seq |= vga_rseq(NULL, 0x01) & ~0x20; |
1139 |
vga_wseq(NULL, 0x00, seq); |
1140 |
|
1141 |
crtc17 |= vga_rcrt(NULL, 0x17) & ~0x80; |
1142 |
while (loop--); |
1143 |
vga_wcrt(NULL, 0x17, crtc17); |
1144 |
vga_wseq(NULL, 0x00, 0x03); |
1145 |
} else { |
1146 |
task = uvesafb_prep(); |
1147 |
if (!task) |
1148 |
return -ENOMEM; |
1149 |
|
1150 |
task->t.regs.eax = 0x4f10; |
1151 |
switch (blank) { |
1152 |
case FB_BLANK_UNBLANK: |
1153 |
task->t.regs.ebx = 0x0001; |
1154 |
break; |
1155 |
case FB_BLANK_NORMAL: |
1156 |
task->t.regs.ebx = 0x0101; /* standby */ |
1157 |
break; |
1158 |
case FB_BLANK_POWERDOWN: |
1159 |
task->t.regs.ebx = 0x0401; /* powerdown */ |
1160 |
break; |
1161 |
default: |
1162 |
goto out; |
1163 |
} |
1164 |
|
1165 |
err = uvesafb_exec(task); |
1166 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) |
1167 |
err = 1; |
1168 |
out: uvesafb_free(task); |
1169 |
} |
1170 |
return err; |
1171 |
} |
1172 |
|
1173 |
static int uvesafb_open(struct fb_info *info, int user) |
1174 |
{ |
1175 |
struct uvesafb_par *par = info->par; |
1176 |
int cnt = atomic_read(&par->ref_count); |
1177 |
|
1178 |
if (!cnt && par->vbe_state_size) |
1179 |
par->vbe_state_orig = uvesafb_vbe_state_save(par); |
1180 |
|
1181 |
atomic_inc(&par->ref_count); |
1182 |
return 0; |
1183 |
} |
1184 |
|
1185 |
static int uvesafb_release(struct fb_info *info, int user) |
1186 |
{ |
1187 |
struct uvesafb_ktask *task = NULL; |
1188 |
struct uvesafb_par *par = info->par; |
1189 |
int cnt = atomic_read(&par->ref_count); |
1190 |
|
1191 |
if (!cnt) |
1192 |
return -EINVAL; |
1193 |
|
1194 |
if (cnt != 1) |
1195 |
goto out; |
1196 |
|
1197 |
task = uvesafb_prep(); |
1198 |
if (!task) |
1199 |
goto out; |
1200 |
|
1201 |
/* First, try to set the standard 80x25 text mode. */ |
1202 |
task->t.regs.eax = 0x0003; |
1203 |
uvesafb_exec(task); |
1204 |
|
1205 |
/* |
1206 |
* Now try to restore whatever hardware state we might have |
1207 |
* saved when the fb device was first opened. |
1208 |
*/ |
1209 |
uvesafb_vbe_state_restore(par, par->vbe_state_orig); |
1210 |
out: |
1211 |
atomic_dec(&par->ref_count); |
1212 |
if (task) |
1213 |
uvesafb_free(task); |
1214 |
return 0; |
1215 |
} |
1216 |
|
1217 |
static int uvesafb_set_par(struct fb_info *info) |
1218 |
{ |
1219 |
struct uvesafb_par *par = info->par; |
1220 |
struct uvesafb_ktask *task = NULL; |
1221 |
struct vbe_crtc_ib *crtc = NULL; |
1222 |
struct vbe_mode_ib *mode = NULL; |
1223 |
int i, err = 0, depth = info->var.bits_per_pixel; |
1224 |
|
1225 |
if (depth > 8 && depth != 32) |
1226 |
depth = info->var.red.length + info->var.green.length + |
1227 |
info->var.blue.length; |
1228 |
|
1229 |
i = uvesafb_vbe_find_mode(par, info->var.xres, info->var.yres, depth, |
1230 |
UVESAFB_EXACT_RES | UVESAFB_EXACT_DEPTH); |
1231 |
if (i >= 0) |
1232 |
mode = &par->vbe_modes[i]; |
1233 |
else |
1234 |
return -EINVAL; |
1235 |
|
1236 |
task = uvesafb_prep(); |
1237 |
if (!task) |
1238 |
return -ENOMEM; |
1239 |
setmode: |
1240 |
task->t.regs.eax = 0x4f02; |
1241 |
task->t.regs.ebx = mode->mode_id | 0x4000; /* use LFB */ |
1242 |
|
1243 |
if (par->vbe_ib.vbe_version >= 0x0300 && !par->nocrtc && |
1244 |
info->var.pixclock != 0) { |
1245 |
task->t.regs.ebx |= 0x0800; /* use CRTC data */ |
1246 |
task->t.flags = TF_BUF_ESDI; |
1247 |
crtc = kzalloc(sizeof(struct vbe_crtc_ib), GFP_KERNEL); |
1248 |
if (!crtc) { |
1249 |
err = -ENOMEM; |
1250 |
goto out; |
1251 |
} |
1252 |
crtc->horiz_start = info->var.xres + info->var.right_margin; |
1253 |
crtc->horiz_end = crtc->horiz_start + info->var.hsync_len; |
1254 |
crtc->horiz_total = crtc->horiz_end + info->var.left_margin; |
1255 |
|
1256 |
crtc->vert_start = info->var.yres + info->var.lower_margin; |
1257 |
crtc->vert_end = crtc->vert_start + info->var.vsync_len; |
1258 |
crtc->vert_total = crtc->vert_end + info->var.upper_margin; |
1259 |
|
1260 |
crtc->pixel_clock = PICOS2KHZ(info->var.pixclock) * 1000; |
1261 |
crtc->refresh_rate = (u16)(100 * (crtc->pixel_clock / |
1262 |
(crtc->vert_total * crtc->horiz_total))); |
1263 |
|
1264 |
if (info->var.vmode & FB_VMODE_DOUBLE) |
1265 |
crtc->flags |= 0x1; |
1266 |
if (info->var.vmode & FB_VMODE_INTERLACED) |
1267 |
crtc->flags |= 0x2; |
1268 |
if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT)) |
1269 |
crtc->flags |= 0x4; |
1270 |
if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT)) |
1271 |
crtc->flags |= 0x8; |
1272 |
memcpy(&par->crtc, crtc, sizeof(*crtc)); |
1273 |
} else { |
1274 |
memset(&par->crtc, 0, sizeof(*crtc)); |
1275 |
} |
1276 |
|
1277 |
task->t.buf_len = sizeof(struct vbe_crtc_ib); |
1278 |
task->buf = &par->crtc; |
1279 |
|
1280 |
err = uvesafb_exec(task); |
1281 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f) { |
1282 |
/* |
1283 |
* The mode switch might have failed because we tried to |
1284 |
* use our own timings. Try again with the default timings. |
1285 |
*/ |
1286 |
if (crtc != NULL) { |
1287 |
printk(KERN_WARNING "uvesafb: mode switch failed " |
1288 |
"(eax=0x%x, err=%d). Trying again with " |
1289 |
"default timings.\n", task->t.regs.eax, err); |
1290 |
uvesafb_reset(task); |
1291 |
kfree(crtc); |
1292 |
crtc = NULL; |
1293 |
info->var.pixclock = 0; |
1294 |
goto setmode; |
1295 |
} else { |
1296 |
printk(KERN_ERR "uvesafb: mode switch failed (eax=" |
1297 |
"0x%x, err=%d)\n", task->t.regs.eax, err); |
1298 |
err = -EINVAL; |
1299 |
goto out; |
1300 |
} |
1301 |
} |
1302 |
par->mode_idx = i; |
1303 |
|
1304 |
/* For 8bpp modes, always try to set the DAC to 8 bits. */ |
1305 |
if (par->vbe_ib.capabilities & VBE_CAP_CAN_SWITCH_DAC && |
1306 |
mode->bits_per_pixel <= 8) { |
1307 |
uvesafb_reset(task); |
1308 |
task->t.regs.eax = 0x4f08; |
1309 |
task->t.regs.ebx = 0x0800; |
1310 |
|
1311 |
err = uvesafb_exec(task); |
1312 |
if (err || (task->t.regs.eax & 0xffff) != 0x004f || |
1313 |
((task->t.regs.ebx & 0xff00) >> 8) != 8) { |
1314 |
/* |
1315 |
* We've failed to set the DAC palette format - |
1316 |
* time to correct var. |
1317 |
*/ |
1318 |
info->var.red.length = 6; |
1319 |
info->var.green.length = 6; |
1320 |
info->var.blue.length = 6; |
1321 |
} |
1322 |
} |
1323 |
|
1324 |
info->fix.visual = (info->var.bits_per_pixel == 8) ? |
1325 |
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; |
1326 |
info->fix.line_length = mode->bytes_per_scan_line; |
1327 |
|
1328 |
out: if (crtc != NULL) |
1329 |
kfree(crtc); |
1330 |
uvesafb_free(task); |
1331 |
|
1332 |
return err; |
1333 |
} |
1334 |
|
1335 |
static void uvesafb_check_limits(struct fb_var_screeninfo *var, |
1336 |
struct fb_info *info) |
1337 |
{ |
1338 |
const struct fb_videomode *mode; |
1339 |
struct uvesafb_par *par = info->par; |
1340 |
|
1341 |
/* |
1342 |
* If pixclock is set to 0, then we're using default BIOS timings |
1343 |
* and thus don't have to perform any checks here. |
1344 |
*/ |
1345 |
if (!var->pixclock) |
1346 |
return; |
1347 |
|
1348 |
if (par->vbe_ib.vbe_version < 0x0300) { |
1349 |
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, var, info); |
1350 |
return; |
1351 |
} |
1352 |
|
1353 |
if (!fb_validate_mode(var, info)) |
1354 |
return; |
1355 |
|
1356 |
mode = fb_find_best_mode(var, &info->modelist); |
1357 |
if (mode) { |
1358 |
if (mode->xres == var->xres && mode->yres == var->yres && |
1359 |
!(mode->vmode & (FB_VMODE_INTERLACED | FB_VMODE_DOUBLE))) { |
1360 |
fb_videomode_to_var(var, mode); |
1361 |
return; |
1362 |
} |
1363 |
} |
1364 |
|
1365 |
if (info->monspecs.gtf && !fb_get_mode(FB_MAXTIMINGS, 0, var, info)) |
1366 |
return; |
1367 |
/* Use default refresh rate */ |
1368 |
var->pixclock = 0; |
1369 |
} |
1370 |
|
1371 |
static int uvesafb_check_var(struct fb_var_screeninfo *var, |
1372 |
struct fb_info *info) |
1373 |
{ |
1374 |
struct uvesafb_par *par = info->par; |
1375 |
struct vbe_mode_ib *mode = NULL; |
1376 |
int match = -1; |
1377 |
int depth = var->red.length + var->green.length + var->blue.length; |
1378 |
|
1379 |
/* |
1380 |
* Various apps will use bits_per_pixel to set the color depth, |
1381 |
* which is theoretically incorrect, but which we'll try to handle |
1382 |
* here. |
1383 |
*/ |
1384 |
if (depth == 0 || abs(depth - var->bits_per_pixel) >= 8) |
1385 |
depth = var->bits_per_pixel; |
1386 |
|
1387 |
match = uvesafb_vbe_find_mode(par, var->xres, var->yres, depth, |
1388 |
UVESAFB_EXACT_RES); |
1389 |
if (match == -1) |
1390 |
return -EINVAL; |
1391 |
|
1392 |
mode = &par->vbe_modes[match]; |
1393 |
uvesafb_setup_var(var, info, mode); |
1394 |
|
1395 |
/* |
1396 |
* Check whether we have remapped enough memory for this mode. |
1397 |
* We might be called at an early stage, when we haven't remapped |
1398 |
* any memory yet, in which case we simply skip the check. |
1399 |
*/ |
1400 |
if (var->yres * mode->bytes_per_scan_line > info->fix.smem_len |
1401 |
&& info->fix.smem_len) |
1402 |
return -EINVAL; |
1403 |
|
1404 |
if ((var->vmode & FB_VMODE_DOUBLE) && |
1405 |
!(par->vbe_modes[match].mode_attr & 0x100)) |
1406 |
var->vmode &= ~FB_VMODE_DOUBLE; |
1407 |
|
1408 |
if ((var->vmode & FB_VMODE_INTERLACED) && |
1409 |
!(par->vbe_modes[match].mode_attr & 0x200)) |
1410 |
var->vmode &= ~FB_VMODE_INTERLACED; |
1411 |
|
1412 |
uvesafb_check_limits(var, info); |
1413 |
|
1414 |
var->xres_virtual = var->xres; |
1415 |
var->yres_virtual = (par->ypan) ? |
1416 |
info->fix.smem_len / mode->bytes_per_scan_line : |
1417 |
var->yres; |
1418 |
return 0; |
1419 |
} |
1420 |
|
1421 |
static void uvesafb_save_state(struct fb_info *info) |
1422 |
{ |
1423 |
struct uvesafb_par *par = info->par; |
1424 |
|
1425 |
if (par->vbe_state_saved) |
1426 |
kfree(par->vbe_state_saved); |
1427 |
|
1428 |
par->vbe_state_saved = uvesafb_vbe_state_save(par); |
1429 |
} |
1430 |
|
1431 |
static void uvesafb_restore_state(struct fb_info *info) |
1432 |
{ |
1433 |
struct uvesafb_par *par = info->par; |
1434 |
|
1435 |
uvesafb_vbe_state_restore(par, par->vbe_state_saved); |
1436 |
} |
1437 |
|
1438 |
static struct fb_ops uvesafb_ops = { |
1439 |
.owner = THIS_MODULE, |
1440 |
.fb_open = uvesafb_open, |
1441 |
.fb_release = uvesafb_release, |
1442 |
.fb_setcolreg = uvesafb_setcolreg, |
1443 |
.fb_setcmap = uvesafb_setcmap, |
1444 |
.fb_pan_display = uvesafb_pan_display, |
1445 |
.fb_blank = uvesafb_blank, |
1446 |
.fb_fillrect = cfb_fillrect, |
1447 |
.fb_copyarea = cfb_copyarea, |
1448 |
.fb_imageblit = cfb_imageblit, |
1449 |
.fb_check_var = uvesafb_check_var, |
1450 |
.fb_set_par = uvesafb_set_par, |
1451 |
.fb_save_state = uvesafb_save_state, |
1452 |
.fb_restore_state = uvesafb_restore_state, |
1453 |
}; |
1454 |
|
1455 |
static void __devinit uvesafb_init_info(struct fb_info *info, |
1456 |
struct vbe_mode_ib *mode) |
1457 |
{ |
1458 |
unsigned int size_vmode; |
1459 |
unsigned int size_remap; |
1460 |
unsigned int size_total; |
1461 |
struct uvesafb_par *par = info->par; |
1462 |
int i, h; |
1463 |
|
1464 |
info->pseudo_palette = ((u8 *)info->par + sizeof(struct uvesafb_par)); |
1465 |
info->fix = uvesafb_fix; |
1466 |
info->fix.ypanstep = par->ypan ? 1 : 0; |
1467 |
info->fix.ywrapstep = (par->ypan > 1) ? 1 : 0; |
1468 |
|
1469 |
/* |
1470 |
* If we were unable to get the state buffer size, disable |
1471 |
* functions for saving and restoring the hardware state. |
1472 |
*/ |
1473 |
if (par->vbe_state_size == 0) { |
1474 |
info->fbops->fb_save_state = NULL; |
1475 |
info->fbops->fb_restore_state = NULL; |
1476 |
} |
1477 |
|
1478 |
/* Disable blanking if the user requested so. */ |
1479 |
if (!blank) |
1480 |
info->fbops->fb_blank = NULL; |
1481 |
|
1482 |
/* |
1483 |
* Find out how much IO memory is required for the mode with |
1484 |
* the highest resolution. |
1485 |
*/ |
1486 |
size_remap = 0; |
1487 |
for (i = 0; i < par->vbe_modes_cnt; i++) { |
1488 |
h = par->vbe_modes[i].bytes_per_scan_line * |
1489 |
par->vbe_modes[i].y_res; |
1490 |
if (h > size_remap) |
1491 |
size_remap = h; |
1492 |
} |
1493 |
size_remap *= 2; |
1494 |
|
1495 |
/* |
1496 |
* size_vmode -- that is the amount of memory needed for the |
1497 |
* used video mode, i.e. the minimum amount of |
1498 |
* memory we need. |
1499 |
*/ |
1500 |
if (mode != NULL) { |
1501 |
size_vmode = info->var.yres * mode->bytes_per_scan_line; |
1502 |
} else { |
1503 |
size_vmode = info->var.yres * info->var.xres * |
1504 |
((info->var.bits_per_pixel + 7) >> 3); |
1505 |
} |
1506 |
|
1507 |
/* |
1508 |
* size_total -- all video memory we have. Used for mtrr |
1509 |
* entries, resource allocation and bounds |
1510 |
* checking. |
1511 |
*/ |
1512 |
size_total = par->vbe_ib.total_memory * 65536; |
1513 |
if (vram_total) |
1514 |
size_total = vram_total * 1024 * 1024; |
1515 |
if (size_total < size_vmode) |
1516 |
size_total = size_vmode; |
1517 |
|
1518 |
/* |
1519 |
* size_remap -- the amount of video memory we are going to |
1520 |
* use for vesafb. With modern cards it is no |
1521 |
* option to simply use size_total as th |
1522 |
* wastes plenty of kernel address space. |
1523 |
*/ |
1524 |
if (vram_remap) |
1525 |
size_remap = vram_remap * 1024 * 1024; |
1526 |
if (size_remap < size_vmode) |
1527 |
size_remap = size_vmode; |
1528 |
if (size_remap > size_total) |
1529 |
size_remap = size_total; |
1530 |
|
1531 |
info->fix.smem_len = size_remap; |
1532 |
info->fix.smem_start = mode->phys_base_ptr; |
1533 |
|
1534 |
/* |
1535 |
* We have to set yres_virtual here because when setup_var() was |
1536 |
* called, smem_len wasn't defined yet. |
1537 |
*/ |
1538 |
info->var.yres_virtual = info->fix.smem_len / |
1539 |
mode->bytes_per_scan_line; |
1540 |
|
1541 |
if (par->ypan && info->var.yres_virtual > info->var.yres) { |
1542 |
printk(KERN_INFO "uvesafb: scrolling: %s " |
1543 |
"using protected mode interface, " |
1544 |
"yres_virtual=%d\n", |
1545 |
(par->ypan > 1) ? "ywrap" : "ypan", |
1546 |
info->var.yres_virtual); |
1547 |
} else { |
1548 |
printk(KERN_INFO "uvesafb: scrolling: redraw\n"); |
1549 |
info->var.yres_virtual = info->var.yres; |
1550 |
par->ypan = 0; |
1551 |
} |
1552 |
|
1553 |
info->flags = FBINFO_FLAG_DEFAULT | |
1554 |
(par->ypan) ? FBINFO_HWACCEL_YPAN : 0; |
1555 |
|
1556 |
if (!par->ypan) |
1557 |
info->fbops->fb_pan_display = NULL; |
1558 |
} |
1559 |
|
1560 |
static void uvesafb_init_mtrr(struct fb_info *info) |
1561 |
{ |
1562 |
#ifdef CONFIG_MTRR |
1563 |
if (mtrr && !(info->fix.smem_start & (PAGE_SIZE - 1))) { |
1564 |
int temp_size = info->fix.smem_len; |
1565 |
unsigned int type = 0; |
1566 |
|
1567 |
switch (mtrr) { |
1568 |
case 1: |
1569 |
type = MTRR_TYPE_UNCACHABLE; |
1570 |
break; |
1571 |
case 2: |
1572 |
type = MTRR_TYPE_WRBACK; |
1573 |
break; |
1574 |
case 3: |
1575 |
type = MTRR_TYPE_WRCOMB; |
1576 |
break; |
1577 |
case 4: |
1578 |
type = MTRR_TYPE_WRTHROUGH; |
1579 |
break; |
1580 |
default: |
1581 |
type = 0; |
1582 |
break; |
1583 |
} |
1584 |
|
1585 |
if (type) { |
1586 |
int rc; |
1587 |
|
1588 |
/* Find the largest power-of-two */ |
1589 |
while (temp_size & (temp_size - 1)) |
1590 |
temp_size &= (temp_size - 1); |
1591 |
|
1592 |
/* Try and find a power of two to add */ |
1593 |
do { |
1594 |
rc = mtrr_add(info->fix.smem_start, |
1595 |
temp_size, type, 1); |
1596 |
temp_size >>= 1; |
1597 |
} while (temp_size >= PAGE_SIZE && rc == -EINVAL); |
1598 |
} |
1599 |
} |
1600 |
#endif /* CONFIG_MTRR */ |
1601 |
} |
1602 |
|
1603 |
|
1604 |
static ssize_t uvesafb_show_vbe_ver(struct device *dev, |
1605 |
struct device_attribute *attr, char *buf) |
1606 |
{ |
1607 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1608 |
struct uvesafb_par *par = info->par; |
1609 |
|
1610 |
return snprintf(buf, PAGE_SIZE, "%.4x\n", par->vbe_ib.vbe_version); |
1611 |
} |
1612 |
|
1613 |
static DEVICE_ATTR(vbe_version, S_IRUGO, uvesafb_show_vbe_ver, NULL); |
1614 |
|
1615 |
static ssize_t uvesafb_show_vbe_modes(struct device *dev, |
1616 |
struct device_attribute *attr, char *buf) |
1617 |
{ |
1618 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1619 |
struct uvesafb_par *par = info->par; |
1620 |
int ret = 0, i; |
1621 |
|
1622 |
for (i = 0; i < par->vbe_modes_cnt && ret < PAGE_SIZE; i++) { |
1623 |
ret += snprintf(buf + ret, PAGE_SIZE - ret, |
1624 |
"%dx%d-%d, 0x%.4x\n", |
1625 |
par->vbe_modes[i].x_res, par->vbe_modes[i].y_res, |
1626 |
par->vbe_modes[i].depth, par->vbe_modes[i].mode_id); |
1627 |
} |
1628 |
|
1629 |
return ret; |
1630 |
} |
1631 |
|
1632 |
static DEVICE_ATTR(vbe_modes, S_IRUGO, uvesafb_show_vbe_modes, NULL); |
1633 |
|
1634 |
static ssize_t uvesafb_show_vendor(struct device *dev, |
1635 |
struct device_attribute *attr, char *buf) |
1636 |
{ |
1637 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1638 |
struct uvesafb_par *par = info->par; |
1639 |
|
1640 |
if (par->vbe_ib.oem_vendor_name_ptr) |
1641 |
return snprintf(buf, PAGE_SIZE, "%s\n", (char *) |
1642 |
(&par->vbe_ib) + par->vbe_ib.oem_vendor_name_ptr); |
1643 |
else |
1644 |
return 0; |
1645 |
} |
1646 |
|
1647 |
static DEVICE_ATTR(oem_vendor, S_IRUGO, uvesafb_show_vendor, NULL); |
1648 |
|
1649 |
static ssize_t uvesafb_show_product_name(struct device *dev, |
1650 |
struct device_attribute *attr, char *buf) |
1651 |
{ |
1652 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1653 |
struct uvesafb_par *par = info->par; |
1654 |
|
1655 |
if (par->vbe_ib.oem_product_name_ptr) |
1656 |
return snprintf(buf, PAGE_SIZE, "%s\n", (char *) |
1657 |
(&par->vbe_ib) + par->vbe_ib.oem_product_name_ptr); |
1658 |
else |
1659 |
return 0; |
1660 |
} |
1661 |
|
1662 |
static DEVICE_ATTR(oem_product_name, S_IRUGO, uvesafb_show_product_name, NULL); |
1663 |
|
1664 |
static ssize_t uvesafb_show_product_rev(struct device *dev, |
1665 |
struct device_attribute *attr, char *buf) |
1666 |
{ |
1667 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1668 |
struct uvesafb_par *par = info->par; |
1669 |
|
1670 |
if (par->vbe_ib.oem_product_rev_ptr) |
1671 |
return snprintf(buf, PAGE_SIZE, "%s\n", (char *) |
1672 |
(&par->vbe_ib) + par->vbe_ib.oem_product_rev_ptr); |
1673 |
else |
1674 |
return 0; |
1675 |
} |
1676 |
|
1677 |
static DEVICE_ATTR(oem_product_rev, S_IRUGO, uvesafb_show_product_rev, NULL); |
1678 |
|
1679 |
static ssize_t uvesafb_show_oem_string(struct device *dev, |
1680 |
struct device_attribute *attr, char *buf) |
1681 |
{ |
1682 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1683 |
struct uvesafb_par *par = info->par; |
1684 |
|
1685 |
if (par->vbe_ib.oem_string_ptr) |
1686 |
return snprintf(buf, PAGE_SIZE, "%s\n", |
1687 |
(char *)(&par->vbe_ib) + par->vbe_ib.oem_string_ptr); |
1688 |
else |
1689 |
return 0; |
1690 |
} |
1691 |
|
1692 |
static DEVICE_ATTR(oem_string, S_IRUGO, uvesafb_show_oem_string, NULL); |
1693 |
|
1694 |
static ssize_t uvesafb_show_nocrtc(struct device *dev, |
1695 |
struct device_attribute *attr, char *buf) |
1696 |
{ |
1697 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1698 |
struct uvesafb_par *par = info->par; |
1699 |
|
1700 |
return snprintf(buf, PAGE_SIZE, "%d\n", par->nocrtc); |
1701 |
} |
1702 |
|
1703 |
static ssize_t uvesafb_store_nocrtc(struct device *dev, |
1704 |
struct device_attribute *attr, const char *buf, size_t count) |
1705 |
{ |
1706 |
struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); |
1707 |
struct uvesafb_par *par = info->par; |
1708 |
|
1709 |
if (count > 0) { |
1710 |
if (buf[0] == '0') |
1711 |
par->nocrtc = 0; |
1712 |
else |
1713 |
par->nocrtc = 1; |
1714 |
} |
1715 |
return count; |
1716 |
} |
1717 |
|
1718 |
static DEVICE_ATTR(nocrtc, S_IRUGO | S_IWUSR, uvesafb_show_nocrtc, |
1719 |
uvesafb_store_nocrtc); |
1720 |
|
1721 |
static struct attribute *uvesafb_dev_attrs[] = { |
1722 |
&dev_attr_vbe_version.attr, |
1723 |
&dev_attr_vbe_modes.attr, |
1724 |
&dev_attr_oem_vendor.attr, |
1725 |
&dev_attr_oem_product_name.attr, |
1726 |
&dev_attr_oem_product_rev.attr, |
1727 |
&dev_attr_oem_string.attr, |
1728 |
&dev_attr_nocrtc.attr, |
1729 |
NULL, |
1730 |
}; |
1731 |
|
1732 |
static struct attribute_group uvesafb_dev_attgrp = { |
1733 |
.name = NULL, |
1734 |
.attrs = uvesafb_dev_attrs, |
1735 |
}; |
1736 |
|
1737 |
static int __devinit uvesafb_probe(struct platform_device *dev) |
1738 |
{ |
1739 |
struct fb_info *info; |
1740 |
struct vbe_mode_ib *mode = NULL; |
1741 |
struct uvesafb_par *par; |
1742 |
int err = 0, i; |
1743 |
|
1744 |
info = framebuffer_alloc(sizeof(*par) + sizeof(u32) * 256, &dev->dev); |
1745 |
if (!info) |
1746 |
return -ENOMEM; |
1747 |
|
1748 |
par = info->par; |
1749 |
|
1750 |
err = uvesafb_vbe_init(info); |
1751 |
if (err) { |
1752 |
printk(KERN_ERR "uvesafb: vbe_init() failed with %d\n", err); |
1753 |
goto out; |
1754 |
} |
1755 |
|
1756 |
info->fbops = &uvesafb_ops; |
1757 |
|
1758 |
i = uvesafb_vbe_init_mode(info); |
1759 |
if (i < 0) { |
1760 |
err = -EINVAL; |
1761 |
goto out; |
1762 |
} else { |
1763 |
mode = &par->vbe_modes[i]; |
1764 |
} |
1765 |
|
1766 |
if (fb_alloc_cmap(&info->cmap, 256, 0) < 0) { |
1767 |
err = -ENXIO; |
1768 |
goto out; |
1769 |
} |
1770 |
|
1771 |
uvesafb_init_info(info, mode); |
1772 |
|
1773 |
if (!request_mem_region(info->fix.smem_start, info->fix.smem_len, |
1774 |
"uvesafb")) { |
1775 |
printk(KERN_ERR "uvesafb: cannot reserve video memory at " |
1776 |
"0x%lx\n", info->fix.smem_start); |
1777 |
err = -EIO; |
1778 |
goto out_mode; |
1779 |
} |
1780 |
|
1781 |
info->screen_base = ioremap(info->fix.smem_start, info->fix.smem_len); |
1782 |
|
1783 |
if (!info->screen_base) { |
1784 |
printk(KERN_ERR |
1785 |
"uvesafb: abort, cannot ioremap 0x%x bytes of video " |
1786 |
"memory at 0x%lx\n", |
1787 |
info->fix.smem_len, info->fix.smem_start); |
1788 |
err = -EIO; |
1789 |
goto out_mem; |
1790 |
} |
1791 |
|
1792 |
if (!request_region(0x3c0, 32, "uvesafb")) { |
1793 |
printk(KERN_ERR "uvesafb: request region 0x3c0-0x3e0 failed\n"); |
1794 |
err = -EIO; |
1795 |
goto out_unmap; |
1796 |
} |
1797 |
|
1798 |
uvesafb_init_mtrr(info); |
1799 |
platform_set_drvdata(dev, info); |
1800 |
|
1801 |
if (register_framebuffer(info) < 0) { |
1802 |
printk(KERN_ERR |
1803 |
"uvesafb: failed to register framebuffer device\n"); |
1804 |
err = -EINVAL; |
1805 |
goto out_reg; |
1806 |
} |
1807 |
|
1808 |
printk(KERN_INFO "uvesafb: framebuffer at 0x%lx, mapped to 0x%p, " |
1809 |
"using %dk, total %dk\n", info->fix.smem_start, |
1810 |
info->screen_base, info->fix.smem_len/1024, |
1811 |
par->vbe_ib.total_memory * 64); |
1812 |
printk(KERN_INFO "fb%d: %s frame buffer device\n", info->node, |
1813 |
info->fix.id); |
1814 |
|
1815 |
err = sysfs_create_group(&dev->dev.kobj, &uvesafb_dev_attgrp); |
1816 |
if (err != 0) |
1817 |
printk(KERN_WARNING "fb%d: failed to register attributes\n", |
1818 |
info->node); |
1819 |
|
1820 |
return 0; |
1821 |
|
1822 |
out_reg: |
1823 |
release_region(0x3c0, 32); |
1824 |
out_unmap: |
1825 |
iounmap(info->screen_base); |
1826 |
out_mem: |
1827 |
release_mem_region(info->fix.smem_start, info->fix.smem_len); |
1828 |
out_mode: |
1829 |
if (!list_empty(&info->modelist)) |
1830 |
fb_destroy_modelist(&info->modelist); |
1831 |
fb_destroy_modedb(info->monspecs.modedb); |
1832 |
fb_dealloc_cmap(&info->cmap); |
1833 |
out: |
1834 |
if (par->vbe_modes) |
1835 |
kfree(par->vbe_modes); |
1836 |
|
1837 |
framebuffer_release(info); |
1838 |
return err; |
1839 |
} |
1840 |
|
1841 |
static int uvesafb_remove(struct platform_device *dev) |
1842 |
{ |
1843 |
struct fb_info *info = platform_get_drvdata(dev); |
1844 |
|
1845 |
if (info) { |
1846 |
struct uvesafb_par *par = info->par; |
1847 |
|
1848 |
sysfs_remove_group(&dev->dev.kobj, &uvesafb_dev_attgrp); |
1849 |
unregister_framebuffer(info); |
1850 |
release_region(0x3c0, 32); |
1851 |
iounmap(info->screen_base); |
1852 |
release_mem_region(info->fix.smem_start, info->fix.smem_len); |
1853 |
fb_destroy_modedb(info->monspecs.modedb); |
1854 |
fb_dealloc_cmap(&info->cmap); |
1855 |
|
1856 |
if (par) { |
1857 |
if (par->vbe_modes) |
1858 |
kfree(par->vbe_modes); |
1859 |
if (par->vbe_state_orig) |
1860 |
kfree(par->vbe_state_orig); |
1861 |
if (par->vbe_state_saved) |
1862 |
kfree(par->vbe_state_saved); |
1863 |
} |
1864 |
|
1865 |
framebuffer_release(info); |
1866 |
} |
1867 |
return 0; |
1868 |
} |
1869 |
|
1870 |
static struct platform_driver uvesafb_driver = { |
1871 |
.probe = uvesafb_probe, |
1872 |
.remove = uvesafb_remove, |
1873 |
.driver = { |
1874 |
.name = "uvesafb", |
1875 |
}, |
1876 |
}; |
1877 |
|
1878 |
static struct platform_device *uvesafb_device; |
1879 |
|
1880 |
#ifndef MODULE |
1881 |
static int __devinit uvesafb_setup(char *options) |
1882 |
{ |
1883 |
char *this_opt; |
1884 |
|
1885 |
if (!options || !*options) |
1886 |
return 0; |
1887 |
|
1888 |
while ((this_opt = strsep(&options, ",")) != NULL) { |
1889 |
if (!*this_opt) continue; |
1890 |
|
1891 |
if (!strcmp(this_opt, "redraw")) |
1892 |
ypan = 0; |
1893 |
else if (!strcmp(this_opt, "ypan")) |
1894 |
ypan = 1; |
1895 |
else if (!strcmp(this_opt, "ywrap")) |
1896 |
ypan = 2; |
1897 |
else if (!strcmp(this_opt, "vgapal")) |
1898 |
pmi_setpal = 0; |
1899 |
else if (!strcmp(this_opt, "pmipal")) |
1900 |
pmi_setpal = 1; |
1901 |
else if (!strncmp(this_opt, "mtrr:", 5)) |
1902 |
mtrr = simple_strtoul(this_opt+5, NULL, 0); |
1903 |
else if (!strcmp(this_opt, "nomtrr")) |
1904 |
mtrr = 0; |
1905 |
else if (!strcmp(this_opt, "nocrtc")) |
1906 |
nocrtc = 1; |
1907 |
else if (!strcmp(this_opt, "noedid")) |
1908 |
noedid = 1; |
1909 |
else if (!strcmp(this_opt, "noblank")) |
1910 |
blank = 0; |
1911 |
else if (!strncmp(this_opt, "vtotal:", 7)) |
1912 |
vram_total = simple_strtoul(this_opt + 7, NULL, 0); |
1913 |
else if (!strncmp(this_opt, "vremap:", 7)) |
1914 |
vram_remap = simple_strtoul(this_opt + 7, NULL, 0); |
1915 |
else if (!strncmp(this_opt, "maxhf:", 6)) |
1916 |
maxhf = simple_strtoul(this_opt + 6, NULL, 0); |
1917 |
else if (!strncmp(this_opt, "maxvf:", 6)) |
1918 |
maxvf = simple_strtoul(this_opt + 6, NULL, 0); |
1919 |
else if (!strncmp(this_opt, "maxclk:", 7)) |
1920 |
maxclk = simple_strtoul(this_opt + 7, NULL, 0); |
1921 |
else if (!strncmp(this_opt, "vbemode:", 8)) |
1922 |
vbemode = simple_strtoul(this_opt + 8, NULL, 0); |
1923 |
else if (this_opt[0] >= '0' && this_opt[0] <= '9') { |
1924 |
mode_option = this_opt; |
1925 |
} else { |
1926 |
printk(KERN_WARNING |
1927 |
"uvesafb: unrecognized option %s\n", this_opt); |
1928 |
} |
1929 |
} |
1930 |
|
1931 |
return 0; |
1932 |
} |
1933 |
#endif /* !MODULE */ |
1934 |
|
1935 |
static ssize_t show_v86d(struct device_driver *dev, char *buf) |
1936 |
{ |
1937 |
return snprintf(buf, PAGE_SIZE, "%s\n", v86d_path); |
1938 |
} |
1939 |
|
1940 |
static ssize_t store_v86d(struct device_driver *dev, const char *buf, |
1941 |
size_t count) |
1942 |
{ |
1943 |
strncpy(v86d_path, buf, PATH_MAX); |
1944 |
return count; |
1945 |
} |
1946 |
|
1947 |
static DRIVER_ATTR(v86d, S_IRUGO | S_IWUSR, show_v86d, store_v86d); |
1948 |
|
1949 |
static int __devinit uvesafb_init(void) |
1950 |
{ |
1951 |
int err; |
1952 |
|
1953 |
#ifndef MODULE |
1954 |
char *option = NULL; |
1955 |
|
1956 |
if (fb_get_options("uvesafb", &option)) |
1957 |
return -ENODEV; |
1958 |
uvesafb_setup(option); |
1959 |
#endif |
1960 |
err = cn_add_callback(&uvesafb_cn_id, "uvesafb", uvesafb_cn_callback); |
1961 |
if (err) |
1962 |
return err; |
1963 |
|
1964 |
err = platform_driver_register(&uvesafb_driver); |
1965 |
|
1966 |
if (!err) { |
1967 |
uvesafb_device = platform_device_alloc("uvesafb", 0); |
1968 |
if (uvesafb_device) |
1969 |
err = platform_device_add(uvesafb_device); |
1970 |
else |
1971 |
err = -ENOMEM; |
1972 |
|
1973 |
if (err) { |
1974 |
platform_device_put(uvesafb_device); |
1975 |
platform_driver_unregister(&uvesafb_driver); |
1976 |
cn_del_callback(&uvesafb_cn_id); |
1977 |
return err; |
1978 |
} |
1979 |
|
1980 |
err = driver_create_file(&uvesafb_driver.driver, |
1981 |
&driver_attr_v86d); |
1982 |
if (err) { |
1983 |
printk(KERN_WARNING "uvesafb: failed to register " |
1984 |
"attributes\n"); |
1985 |
err = 0; |
1986 |
} |
1987 |
} |
1988 |
return err; |
1989 |
} |
1990 |
|
1991 |
module_init(uvesafb_init); |
1992 |
|
1993 |
static void __devexit uvesafb_exit(void) |
1994 |
{ |
1995 |
struct uvesafb_ktask *task; |
1996 |
|
1997 |
if (v86d_started) { |
1998 |
task = uvesafb_prep(); |
1999 |
if (task) { |
2000 |
task->t.flags = TF_EXIT; |
2001 |
uvesafb_exec(task); |
2002 |
uvesafb_free(task); |
2003 |
} |
2004 |
} |
2005 |
|
2006 |
cn_del_callback(&uvesafb_cn_id); |
2007 |
driver_remove_file(&uvesafb_driver.driver, &driver_attr_v86d); |
2008 |
platform_device_unregister(uvesafb_device); |
2009 |
platform_driver_unregister(&uvesafb_driver); |
2010 |
} |
2011 |
|
2012 |
module_exit(uvesafb_exit); |
2013 |
|
2014 |
static inline int param_get_scroll(char *buffer, struct kernel_param *kp) |
2015 |
{ |
2016 |
return 0; |
2017 |
} |
2018 |
|
2019 |
static inline int param_set_scroll(const char *val, struct kernel_param *kp) |
2020 |
{ |
2021 |
ypan = 0; |
2022 |
|
2023 |
if (!strcmp(val, "redraw")) |
2024 |
ypan = 0; |
2025 |
else if (!strcmp(val, "ypan")) |
2026 |
ypan = 1; |
2027 |
else if (!strcmp(val, "ywrap")) |
2028 |
ypan = 2; |
2029 |
|
2030 |
return 0; |
2031 |
} |
2032 |
|
2033 |
#define param_check_scroll(name, p) __param_check(name, p, void); |
2034 |
|
2035 |
module_param_named(scroll, ypan, scroll, 0); |
2036 |
MODULE_PARM_DESC(scroll, |
2037 |
"Scrolling mode, set to 'redraw', ''ypan' or 'ywrap'"); |
2038 |
module_param_named(vgapal, pmi_setpal, invbool, 0); |
2039 |
MODULE_PARM_DESC(vgapal, "Set palette using VGA registers"); |
2040 |
module_param_named(pmipal, pmi_setpal, bool, 0); |
2041 |
MODULE_PARM_DESC(pmipal, "Set palette using PMI calls"); |
2042 |
module_param(mtrr, uint, 0); |
2043 |
MODULE_PARM_DESC(mtrr, |
2044 |
"Memory Type Range Registers setting. Use 0 to disable."); |
2045 |
module_param(blank, bool, 0); |
2046 |
MODULE_PARM_DESC(blank, "Enable hardware blanking"); |
2047 |
module_param(nocrtc, bool, 0); |
2048 |
MODULE_PARM_DESC(nocrtc, "Ignore CRTC timings when setting modes"); |
2049 |
module_param(noedid, bool, 0); |
2050 |
MODULE_PARM_DESC(noedid, |
2051 |
"Ignore EDID-provided monitor limits when setting modes"); |
2052 |
module_param(vram_remap, uint, 0); |
2053 |
MODULE_PARM_DESC(vram_remap, "Set amount of video memory to be used [MiB]"); |
2054 |
module_param(vram_total, uint, 0); |
2055 |
MODULE_PARM_DESC(vram_total, "Set total amount of video memoery [MiB]"); |
2056 |
module_param(maxclk, ushort, 0); |
2057 |
MODULE_PARM_DESC(maxclk, "Maximum pixelclock [MHz], overrides EDID data"); |
2058 |
module_param(maxhf, ushort, 0); |
2059 |
MODULE_PARM_DESC(maxhf, |
2060 |
"Maximum horizontal frequency [kHz], overrides EDID data"); |
2061 |
module_param(maxvf, ushort, 0); |
2062 |
MODULE_PARM_DESC(maxvf, |
2063 |
"Maximum vertical frequency [Hz], overrides EDID data"); |
2064 |
module_param_named(mode, mode_option, charp, 0); |
2065 |
MODULE_PARM_DESC(mode, |
2066 |
"Specify initial video mode as \"<xres>x<yres>[-<bpp>][@<refresh>]\""); |
2067 |
module_param(vbemode, ushort, 0); |
2068 |
MODULE_PARM_DESC(vbemode, |
2069 |
"VBE mode number to set, overrides the 'mode' option"); |
2070 |
module_param_string(v86d, v86d_path, PATH_MAX, 0660); |
2071 |
MODULE_PARM_DESC(v86d, "Path to the v86d userspace helper."); |
2072 |
|
2073 |
MODULE_LICENSE("GPL"); |
2074 |
MODULE_AUTHOR("Michal Januszewski <spock@gentoo.org>"); |
2075 |
MODULE_DESCRIPTION("Framebuffer driver for VBE2.0+ compliant graphics boards"); |
2076 |
|